NovaTech Space Systems™

Presenting: NOVA I

Chief Engineers: Felicity Cundiff, Grayson Atwell, Mack Rowan Howard, Andrew Truong, Kai Laslett-Vigil, Daniel Molidor

Background

A group of venture capitalists are interested in funding a network of small satellites to provide satellite internet coverage across the globe. They have asked us to design a low-cost rocket with a reusable first stage that can place a single 1,000 kg satellite into a 500 km altitude low-Earth orbit.

Key design requirements:

- Deliver a 1000kg payload to 500km LEO
- 9km/s of ΔV required
- Rocket must be low cost
- First stage must be reusable

Design Thought Process

- 1. Determine number of stages
- 2. Type of rocket (SRM vs LRM)
- 3. Determine rocket fuel
 - a. Selection based on I_{sp}/\$ ratio
- 4. CEA to finalize ϕ , ϵ , P_c selection
 - a. Range of values:

i.
$$1 \le \phi \le 4$$

ii.
$$20 \le \varepsilon \le 50$$

iii. 150 atm $\leq P_c \leq 300$ atm

- 5. Find optimum stage mass
 - Used matlab script based on
 Orbital Mechanics ideal staging
 weight ratio examples
- Selection of LRM engine configuration
 - a. Determined cooling configuration
- Reiterate and optimize to maximize I_{sp}
 - a. Higher $I_{sp} \rightarrow lower cost$

Design Overview - Staging Breakdown

- Two stage design selected
 - Based on common practice in the Space industry
- MATLAB script (derived from Lagrange multiplier method) generated following mass breakdown:
 - Launch Total Mass = 15,266 kg
 - Payload = 1,000 kg
 - - First Stage: o
 - $m_0 = 11,236 \text{ kg}$
 - $m_{e} = 1,685 \text{ kg}$
 - $m_{p} = 9,550 \text{ kg}$
 - **□** = 0.265
 - $\varepsilon = 0.136$

- Second Stage:
 - $m_0 = 3,030 \text{ kg}$
 - $\mathbf{m}_{\mathbf{a}} = 455 \mathrm{kg}$
 - $m_p = 2,576 \text{ kg}$
 - **■** □ = 0.199
 - $\epsilon = 0.15$

Ideal ΔV Breakdown:

- Launch from French Guiana
 - \circ $\Delta V_{surf} = 0.46 \text{ km/s}$
- Stage 1:
 - \circ $\Delta V = 4.1345 km/s$
- Stage 2:
 - \circ $\Delta V = 4.399 \text{ km/s}$

Fuel Choice

- Staged Combustion LMR for both Fuel Performance Parameters: stages
 - High launch performance
 - o Throttle control for 2nd stage
- Using O₂(L) and H₂(L) for both stages
 - Cheap, high I_{sp}, easily accessible
 - Challenging to manage cryogenic propellant storage
- Optimum mixing ratio of 2.1/1

- $P_c = 30.398 \text{ MPa}$
- $T_c = 2878.64 \, ^{\circ}\text{K}$
- $\gamma_c = 1.2206$
- $A_c = 0.202 \text{ m}^2$
- L* = 1 m
- $\mathfrak{M} = 9.607$ amu
- $C^* = 2416.9 \text{ m/s}$

Cryogenic Fuel Storage: Design Attributes

- Storage temps:
 - \circ H₂ = 90 K
 - \circ $O_{2}^{2} = 20 \text{ k}$
- Double walled storage tanks
 - Inner wall SA240 Grade 304 stainless steel
 - Outer wall SA516 Grade 70 carbon steel
 - Evacuated glass bubbles held under vacuum
 - Reduce heat radiation between walls
 - NASA standard practice
- Additional design considerations:
 - Exterior of rocket painted white to reduce thermal radiation
 - Radiation shield composed of Polyethylene for 2nd stage

Storage Orientation

lower center of gravity Payload

O₂(L)

 $H_{2}(L)$

Turbomachinery Overview

Stage 1

- Estimated mass of turbopump: 65 kg
- \circ P_i = 8.36 MPa
- Estimated mass of all turbomachinery: ~160 kg

• Stage 2

- Estimated mass of turbopump: 27 kg
- \circ P_i = 8.36 MPa
- Estimated mass of all turbomachinery: ~70 kg

https://www.ariane.group/wp-content/uploads/2020/06/VINC I 2020 04 DS EN Eng Web.pdf

Turbomachinery of Vinci rocket with performance similar to stage 1

Combustion Chamber - Film Cooling

- Gaseous film cooling was necessary due to high combustion temperatures (2878 K)
 - Higher than melting point of stainless steel (1783 K)
- Pros
 - Little cost to overall weight, reduce temperature at walls in the hottest areas
- Cons
 - Manufacturing/Design/Testing cost increase
- Implementation
 - Embedded Hydrogen injectors providing a total fuel flow of 0.118 kg/s

$$\frac{T_{\text{aw}} - T_{\text{wg}}}{T_{\text{aw}} - T_{\text{co}}} = e^{-\left(\frac{h_g}{G_c C_{\text{pvc}} \eta_c}\right)}$$
(4-34)

*Design of Liquid Propellant Rocket Engines, Huzel and Huang

Nozzle - Design Components

- Both stages use bell nozzle configuration
- 1st stage performance parameters

$$\circ$$
 P_e = 0.089487 MPa \circ C = 4163.6 m/s

$$\circ$$
 T₂ = 855.71 K

$$\circ$$
 $T_e^e = 855.71 \text{ K}$ \circ $C_F = 1.7277 \text{ m/s}$

$$\epsilon = 25$$
 \circ F = 187199 N

$$\circ$$
 A_t = 0.00373 m²

$$A_t = 0.00373 \text{ m}^2$$
 \circ $\dot{m} = 44.48 \text{ kg/s}$

$$\circ$$
 $A_{s} = 0.0933 \text{ m}^2$ \circ $I_{sp} = 429 \text{ s}$

$$\circ$$
 V_e = 2305.6 m/s

- Expansion ratio of 25 compromise
 - Minimize I_{sn} loss
 - Minimize overexpanded nozzle loss

• 2nd stage performance parameters

$$\circ$$
 P_e = 0.03394 MPa $^{\circ}$ C = 4314.5 m/s

$$C = 4314.5 \text{ m/s}$$

$$\circ$$
 $T_e = 673.62 \text{ K}$ \circ $C_F = 1.785 \text{ m/s}$

$$\circ$$
 C_F = 1.785 m/s

$$\circ$$
 $\epsilon = 50$

$$\circ$$
 $\varepsilon = 50$ \circ $F = 49418 N$

$$\circ$$
 A_t = 0.000929 m² \circ \dot{m} = 11.724 kg/s

$$\dot{m}$$
 = 11.724 kg/s

$$\circ$$
 $A_{e}^{'} = 0.04645 \,\mathrm{m}^{2} \,\circ\, I_{sp} = 440 \,\mathrm{s}$

$$I_{sn} = 440 \text{ s}$$

$$\circ$$
 V_e = 2374.5 m/s

- Maximize expansion ratio
 - Stage 1 burnout at 150 km

No need to pressure match

Nozzle - Regenerative Cooling

- Regenerative Cooling: Circulating coolant absorbs heat from the nozzle
- Material selection: Stainless Steel
 - Unreactive
 - Melting point: 1783 K
- Benefits:
 - Efficient heat dissipation
 - Ensure structural integrity
- Final Pressure and Temperature
 - o Pressure: 296.2 Bar
 - o Temperature: 2301 K

Rocket Overview

- Rocket approx dimensions:
 - o Width: 4 m
 - o Height: 13.5 m
 - Cross Sectional Area: 12.566 m
- Stage burnout breakdown:
 - o 1st stage burn time: 214.7 s
 - Alt = 155 km
 - o 2nd stage burn time: 224.9 s
 - Alt = 545 km
- Total ΔV : 9.175 km/s
 - \circ $\Delta V_{\text{excess}} = 0.632 \text{ km/s}$
- Total cost to refuel (10 launches): \$300,000
- Total cost: \$13.5 million

Future Work

NOVATECH -SPACE SYSTEMS -

Continued research provided adequate funding:

- Controlled reentry/landing of 1st stage using excess ΔV
- Optimize first stage
 - Pressure match to sea level conditions
 - Stability control (fins / gimbling nozzle / compressed air thrusters)
- Structural analysis of chamber and storage tanks
 - Determine wall thickness to contain high pressures
- Employ use of passive cooling where possible in nozzle

THANK YOU!!!

Reference

- https://www.semanticscholar.org/paper/Numerical-analysis-of-regenerative-co oling-in-Ula%C5%9F-Boysan/62da3334c460e708f17151fecdb60153783ff230 /figure/0
- https://ntrs.nasa.gov/api/citations/20210018293/downloads/2021%20CEC%2 0Virtual%20Big%20Tank%20LH2%20DAA%20draft%2007JUI2021.docx.pdf
- https://ntrs.nasa.gov/api/citations/19710019929/downloads/19710019929.pdf

Variable	1 st Stage	2 nd Stage	Variable	1 st Stage	2 nd Stage
P _i	8.36 MPa	8.36 MPa	m	9.607 [amu]	9.607 [amu]
P _c	303.98 [bar]	303.98 [bar]	V _e	2305.6 [m/s]	2374.5 [m/s]
P _e	0.89487 [bar]	0.33994 [bar]	С	4163.6 [m/s[4314.1 [m/s]
T _c	2878.64 [K]	2878.64 [K]	C*	2416.9	2416.9 [m/s]
T _c	855.71 [K]	673.62 [K]	C _F	1.7227	1.785 [m/s]
gamma _c	1.2206	1.2206	F	187199.315 [N]	49417.875 [N]
A _c	0.0212 [m²]	0.00743 [m ²]	m _{dot}	44.48 [kg/s]	11.742 [kg/s]
A _t	0.00373 [m²]	0.000929 [m ²]	Expansion ratio	25	50
A _e	0.0933 [m²]	0.04645 [m ²]	Isp	429	440
L*	1 [m]	1 [m]	beta	0.265	0.199
L _c	0.1754 [m]	0.125 [m]	Structural factor	0.136	0.15

Presentation

from 8:30-10:20am. The presentation should summarize:

- (1) your design approach,
- (2) the main features of your design,
- (3) the distinguishing aspects of the design
- (4) the ability of the design to meet the stated objectives and cost per launch, and
- (5) the next steps you would follow if it was chosen for funding

Payload

 $O_2(L)$

 $H_2(L)$

⊞ m0	1.5266e+04
⊞ m1	1.1236e+04
Ⅲ m1_e	1.6854e+03
<u>₩</u> m1_p	9.5503e+03
<u>₩</u> m2	3.0303e+03
	454.5382
	2.5757e+03
m_pl	1000