C++ is used in cutting-edge technologies such as autonomous vehicles (fixed-wing aircraft, underwater gliders, space launch vehicles), robot arms, and underwater robots. It's crucial for embedded systems expertise. Tools like Blender, Python, and C++ are essential for designing these systems to meet specific goals. Researchers study animals like birds, bats, fish, and insects for insights into precise sensing abilities in changing environments, aiding technology advancement.
import apriltag
import argparse
import cv2
# Argument parser setup
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="path to input image containing AprilTag")
args = ap.parse_args()
# Load and preprocess image
image = cv2.imread(args.image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect AprilTags
detector = apriltag.Detector(apriltag.DetectorOptions(families="tag36h11"))
results = detector.detect(gray)
print(f"[INFO] {len(results)} total AprilTags detected")
# Draw results
for r in results:
(ptA, ptB, ptC, ptD) = map(tuple, map(lambda p: (int(p[0]), int(p[1])), r.corners))
for (start, end) in zip([ptA, ptB, ptC, ptD], [ptB, ptC, ptD, ptA]):
cv2.line(image, start, end, (0, 255, 0), 2)
cv2.circle(image, tuple(map(int, r.center)), 5, (0, 0, 255), -1)
tagFamily = r.tag_family.decode("utf-8")
cv2.putText(image, tagFamily, (ptA[0], ptA[1] - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
print(f"[INFO] tag family: {tagFamily}")
# Display the output image
cv2.imshow("Image", image)
cv2.waitKey(0)
Before running physical tests, planned trajectories will be demonstrated in virtual simulations. This will help prevent unwanted collisions during testing. Motion planning tools interface with the ROS simulation platform, Gazebo.
import bpy
import os
import csv
import mathutils
import math
# Directory for output files
output_dir = 'C:\'
input_file = 'C:\'
def convert_to_gif():
os.system(f"ffmpeg -f image2 -i {output_dir}\\render%d.png video.avi")
os.system(f"ffmpeg -i video.avi -pix_fmt rgb8 {output_dir}\\out.gif")
def camera_step():
global step, steps, point, pos_data, start_point, end_point, start_rot, end_rot, image_num
# Set camera rotation and translation
scene.camera.rotation_quaternion = start_rot.slerp(end_rot, step / steps)
scene.camera.location = start_point.lerp(end_point, step / steps)
# Render the current frame
bpy.context.scene.render.filepath = os.path.join(output_dir, f'render{image_num}.png')
bpy.ops.render.render(write_still=True)
# Update step and image number
step += 1
image_num += 1
if step == steps:
if point < len(pos_data) - 2: # Move to the next point
step = 0
point += 1
update_points_and_rotations()
else: # Finished last segment
convert_to_gif()
return None
return 0.00
def update_points_and_rotations():
global start_point, end_point, start_rot, end_rot
start = pos_data[point]
end = pos_data[point + 1]
bpy.data.objects['Start Point'].location = mathutils.Vector(start[:3])
bpy.data.objects['End Point'].location = mathutils.Vector(end[:3])
start_rot = mathutils.Euler(map(math.radians, start[3:]), 'XYZ').to_quaternion()
end_rot = mathutils.Euler(map(math.radians, end[3:]), 'XYZ').to_quaternion()
bpy.data.objects['Start Point'].rotation_quaternion = start_rot
bpy.data.objects['End Point'].rotation_quaternion = end_rot
start_point = bpy.data.objects['Start Point'].location
end_point = bpy.data.objects['End Point'].location
# Load positions from CSV file
pos_data = []
with open(input_file, newline='', encoding='utf-8-sig') as csvfile:
reader = csv.reader(csvfile)
pos_data = [list(map(float, row)) for row in reader]
# Initialize scene and camera settings
scene = bpy.context.scene
scene.render.resolution_x = 512
scene.render.resolution_y = 512
scene.camera.data.angle = math.radians(75.0)
scene.camera.rotation_mode = 'QUATERNION'
# Set initial points and rotations
point = 0
update_points_and_rotations()
# Initialize step counters
steps = 1
step = 0
image_num = 0
# Register the camera step function to run on a timer
bpy.app.timers.register(camera_step)
In response to the rapid growth of the spaceflight industry, the Nonlinear Dynamics and Control Laboratory, in collaboration with Blue Origin, is developing an advanced control system.
This system integrates fiducial markers to enhance spacecraft docking by improving:This initiative aims to optimize spacecraft maneuvers, ensuring safer and more reliable mission profiles across various applications within the space industry.
AprilTag is a type of fiducial marker, a specific collection of 2D barcodes. When placed on a known object, observation of the markers can be used to calculate relative distance and orientation of the object.
AprilTag accuracies were tested with several variables to predict spacecraft applicability: